

智能硬件体系结构

第三讲: 半导体晶体管与数字逻辑基础

主讲: 陶耀宇、李萌

2025年秋季

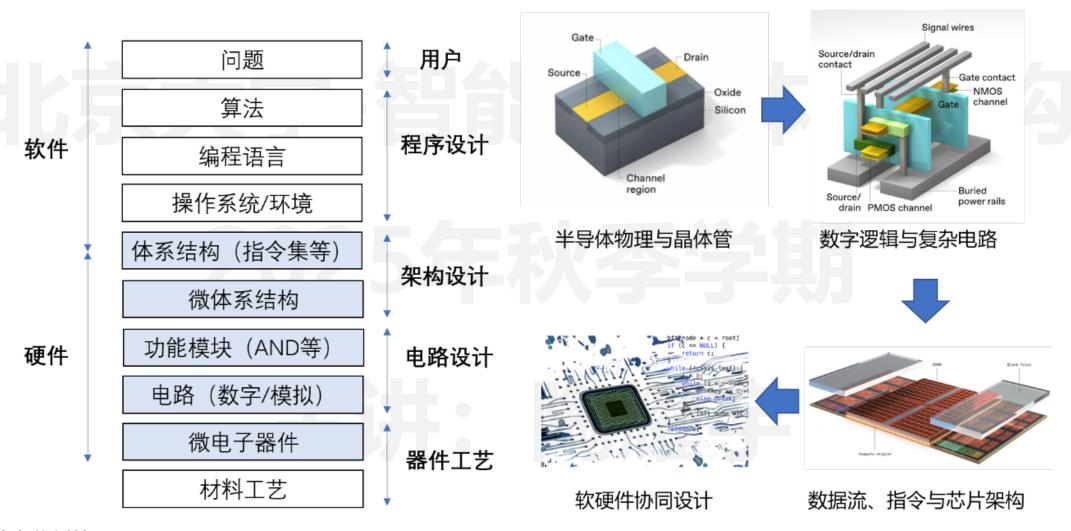
注意事项

・课程作业情况

- · 请各位选课同学确定能够正常登陆CLab平台
- · 国庆节后会在课程上讲解Verilog语言的语法和代码编写范式
- 课程资料参照: <u>https:aiarchpku.com</u>
- · Clab问题请联系助教詹喆同学

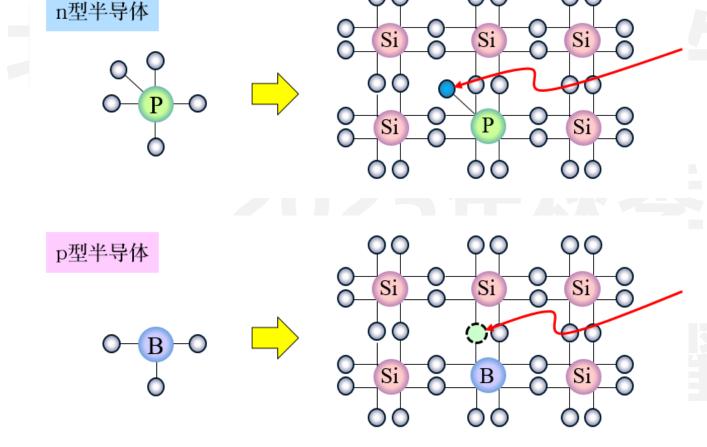
- 01. CMOS晶体管与静态逻辑
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

・半导体晶体管是现代芯片的基石



思想自由 兼容并包

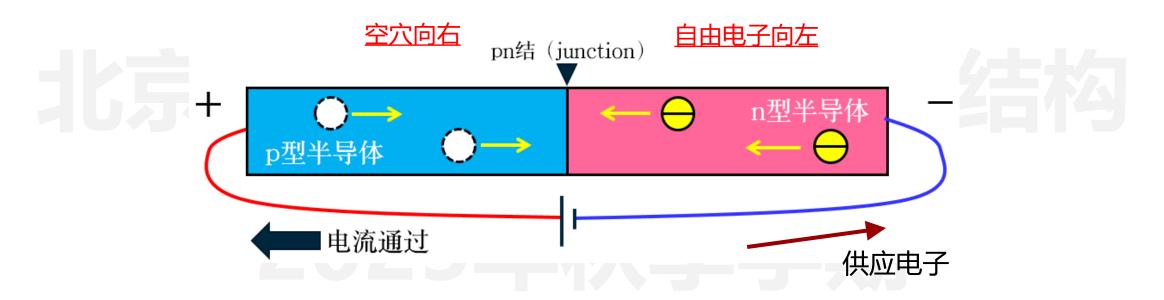
· N型与P型半导体的概念



电子处于"多余"状态。 半导体内富含<u>自由电子</u>。 外加电压后电子就会被吸向+极 半导体变为导电的状态

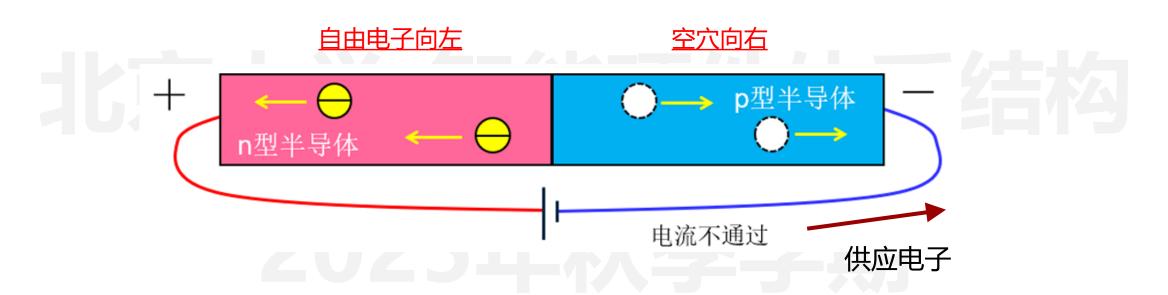
没有电子的"空位"状态 这种空位叫空穴,也就是说空 立中无实体,也叫虚拟粒子

・ PN结的概念 - 导通状态



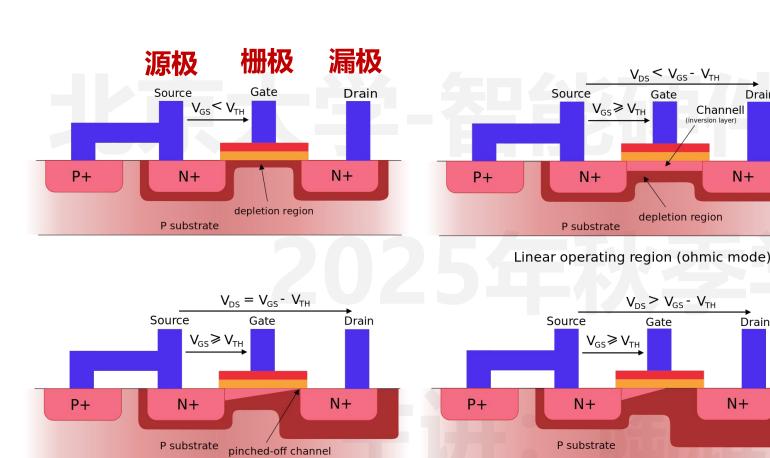
- 对PN结外加电压使P为正极,空穴和电子都向结面移动 当空穴与电子在结面 (Junction) 相遇时,电子飞入空穴,两者抵消
- 相应的新电子从电源补充流入n层,同时电子从p层流出而产生新的空穴,如此反复,电流不断通过

・ PN结的概念 – 断开状态



- 对PN结外加电压使N为正极。
- 空穴和电子向相互远离的方向移动,因此不会在结面相遇,电流无法通过
- · **在结面附近会形成既无空穴又无电子存在的区域,叫做耗尽层**,它会产生耐压。
- 从上述可知pn结**具有整流作用**

・ MOSFET结的概念 – 栅极(gate)、漏极(drain)和源极(source)



Saturation mode at point of pinch-off

当栅极-源极间的电压Vgs<Vth 时,N接了电源正极无论漏极-源极间的电压Vds为多少,因为 PN结的单向导通性,不会有电 流从漏极流向源极

当Vgs超过阈值电压Vth后, 会 形成一个横跨二氧化硅层的电 **场**,在这种电场的作用下, SiO2层和P区交界处附近的电子 会被吸引至SiO2侧,在SiO2侧 形成一个局部电子浓度相对较 高的带状区域(沿着SiO2表面), 即N型导电沟道(depeletion)

Saturation mode

 $V_{DS} < V_{GS} - V_{TH}$

depletion region

 $V_{DS} > V_{GS} - V_{TH}$

Gate

Drain

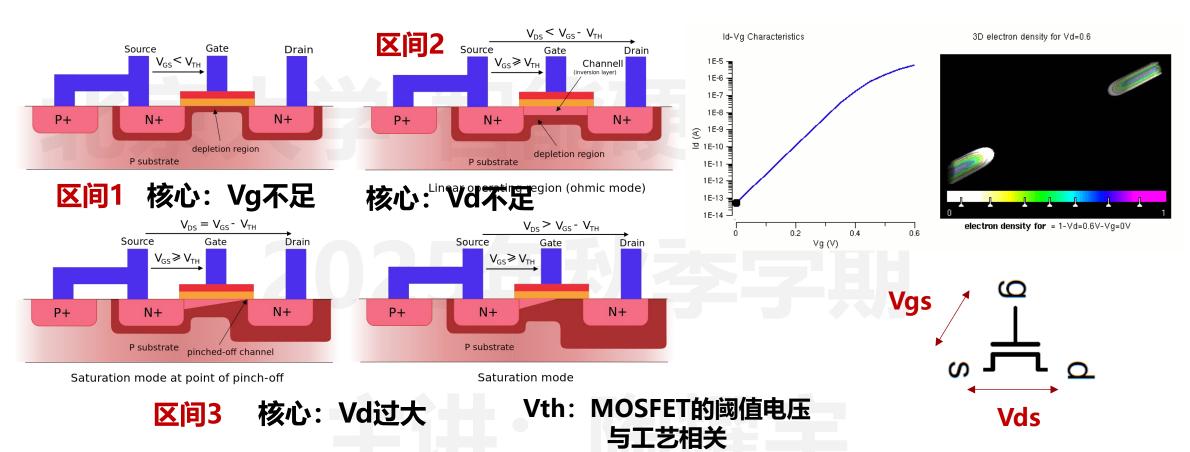
Drain

N+

Channell

Gate

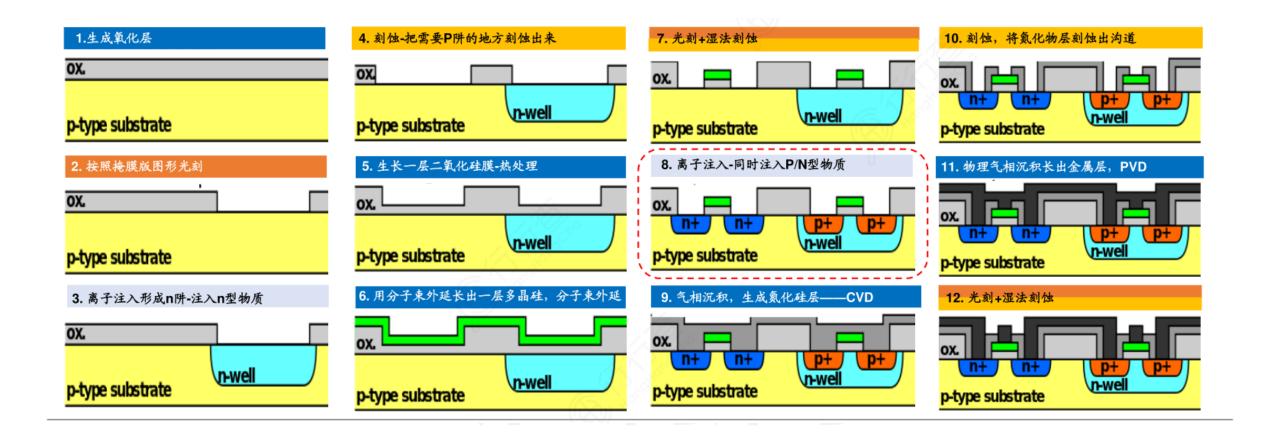
・MOSFET有三个工作区间: 断开、线性 (欧姆区间)、饱和 (电压不随电流线性增加)



1、断开区间: Vgs < Vth 2、线性区间: Vds < Vgs - Vth 3、饱和区间: Vds > Vgs - Vth

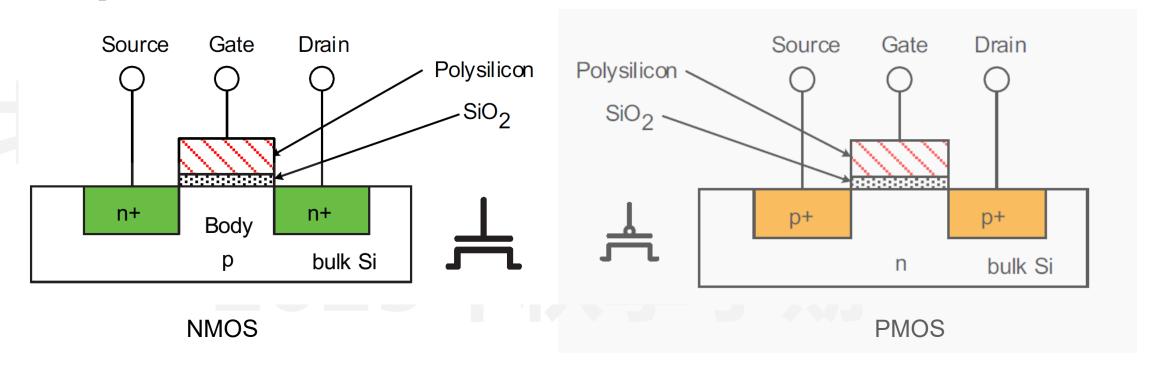
思想自由 兼容并包

· MOSFET的制造过程总结



思想自由 兼容并包

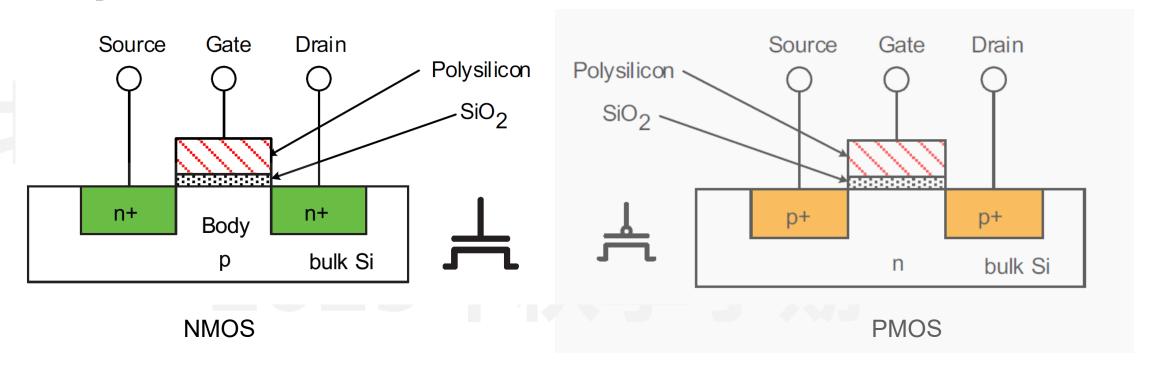
· NMOS与PMOS



当栅极处于低电压:

- §体端(body)接地,即低电压
- § 栅极(gate)下通道中不存在导电通路
- § 无电流流动,晶体管关闭

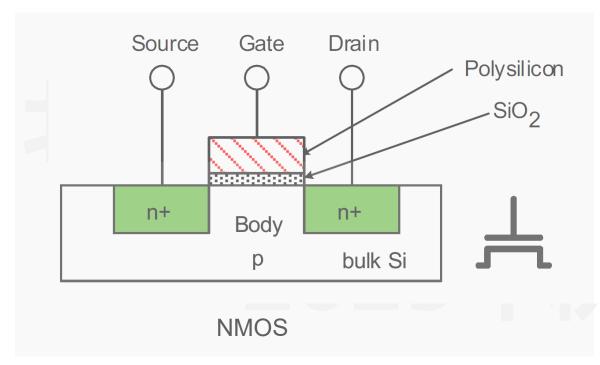
· NMOS与PMOS

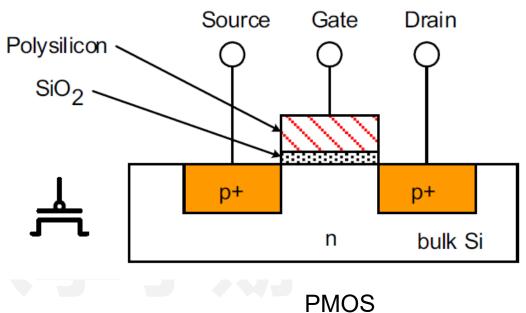


当栅极处于高电压:

- §MOS 电容栅极上有正电荷,体端则有负电荷
- §将栅极下的通道反转为 n型
- §现在电流通过通道流过n型硅,晶体管导通

· NMOS与PMOS





类似NMOS,但掺杂和电压相反

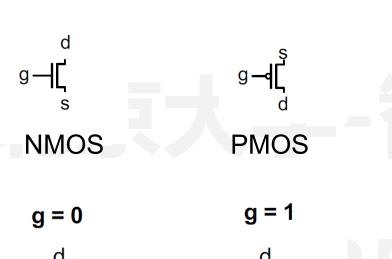
§体端与高电平相连 (VDD)

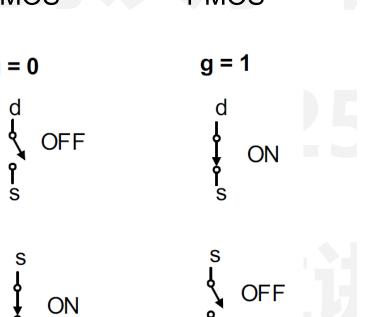
§栅极低电平:晶体管导通

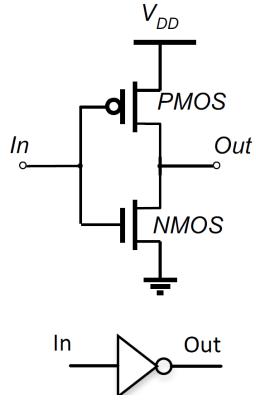
§栅极高电平:晶体管关闭

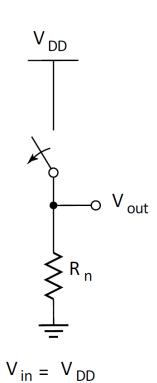
MOSFET作为开关的行为级模型

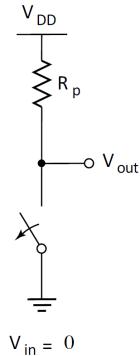
· NMOS、PMOS和简单反相器



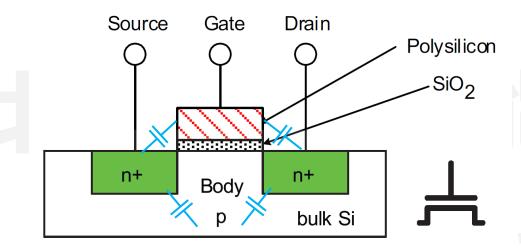




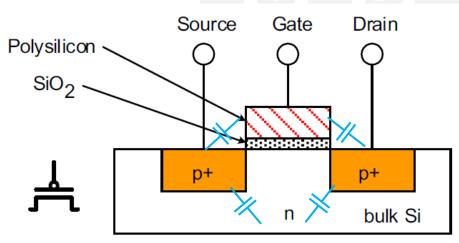




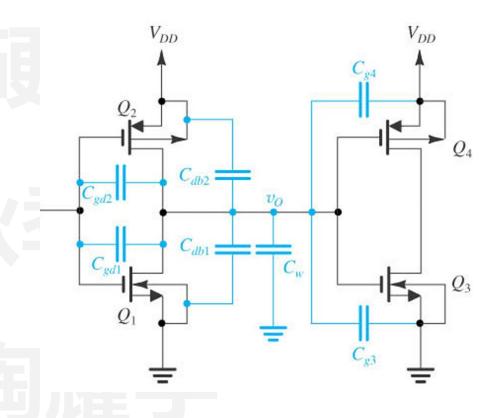
· NMOS与PMOS的寄生电容



NMOS



PMOS



・逻辑函数的定义

- (1) 逻辑变量和逻辑函数的取值只有0和1。 (定义域,值域: {0,1})
- (2) 函数和变量之间的关系由"与、或、非"三种基本运算决定。

+ 或 (OR)

· 与 (AND)

设某一逻辑电路的输入为A₁A₂.....A_n,输出函数

为F, 当 A_1A_2 A_n 的值确定之后,F的值就唯一的

确定了。称 $F为A_1A_2....A_n$ 的逻辑函数。记为:

 $F = f(A_1 A_2 \dots A_n)$

_ 非 (NOT)

- ・逻辑函数定义与基本公理
 - 一、真值表(便于直观的观察变量和函数之间的关系)
 - 二、逻辑函数表达式(便于获得逻辑电路图)

\overline{A}	В	$A \cdot B$	
0	0	0	
0	1	0	
1	0	0	
1	1	1	2

A+BC

一、公理 (Axioms)

$$0 \cdot 0 = 0$$
 $1 + 1 = 1$
 $0 \cdot 1 = 0$ $1 + 0 = 1$
 $1 \cdot 0 = 0$ $0 + 1 = 1$
 $\overline{0} = 1$ $\overline{1} = 0$

· 与 (AND)

跟数值函数一样,逻辑函数表达式由:运算符,变量,常量,运算次序所构成

・逻辑函数的基本定理

二、公式(可由公理推出)

$$0 \cdot A = 0$$
 $1 + A = 1$ (有界性Boundedness)

$$1 \cdot A = A$$
 $0 + A = A$ (单位元素Element)

$$A \cdot A = A$$
 $A + A = A$ (等幂性Idempotency)

$$A \cdot \overline{A} = 0$$
 $A + \overline{A} = 1$ (互补性Complement)

$$A \cdot B = B \cdot A$$
 $A + B = B + A$ 交換律 (Commutativity)

. 与 (AND)

,或 (OR)

• 逻辑函数的基本定理

二、公式(可由公理推出)

$$A(BC)=(AB)C=(AC)B$$

$$A+(B+C)=(A+B)+C=(A+C)+B$$

. 与 (AND)

,或 (OR)

__ 非 (NOT)

・逻辑函数的基本定理

二、公式(可由公理推出)

$$\overline{AB} = \overline{A} + \overline{B}$$
 $\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$
证: 用真值表法证明 $\overline{AB} = \overline{A} + \overline{B}$ $\overline{AB} = \overline{AB} = \overline{AB}$

. 与 (AND)

摩根律 (De Morgan's Laws) + 或 (OR)

・逻辑函数的基本定理

二、公式(可由公理推出)

$$\overline{ABCD\cdots} = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \cdots$$

$$A + B + C + D + \dots = A \cdot B \cdot C \cdot D \dots$$

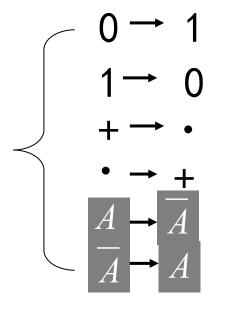
· 与 (AND)

摩根律 (De Morgan's Laws) + 或 (OR)

・逻辑函数的基本定理

三、反演规则

即由 $F(A,B,C\cdots)$ 求 $\overline{F}(A,B,C\cdots)$



0, 1 互换,

与,或互换

A,Ā互换

使用反演规则时,应注意保持原函数式中的运算符号的优先顺序不变(先与后或,除非另加括号)

· 与 (AND)

,或 (OR)

・逻辑函数的基本定理

例1:
$$F = \overline{A} + \overline{B}(C + \overline{D}E)$$
 $\overline{F} = A \cdot [B + \overline{C}(D + \overline{E})]$

例2:
$$F = \overline{AB + C}$$
 ① $\overline{F} = AB + C$ (直接去掉反号)

②
$$\overline{F} = \overline{\overline{AB} + C} = \overline{(\overline{A} + B) \cdot \overline{C}} = \overline{\overline{A} + B} + C = A\overline{B} + C$$
 (原函数两边取非,摩根律化简)

其实反演规则就是摩根律的推广。

例3:
$$F = A\overline{B} + B(\overline{A} + C)$$

① 按反演规则可直接写出:

$$\overline{F} = (\overline{A} + B)(\overline{B} + A\overline{C})$$

・逻辑函数的简化案例

例1:

$$F = (A+B)(A+\overline{B})(B+C)(A+C+D)$$
 求对係

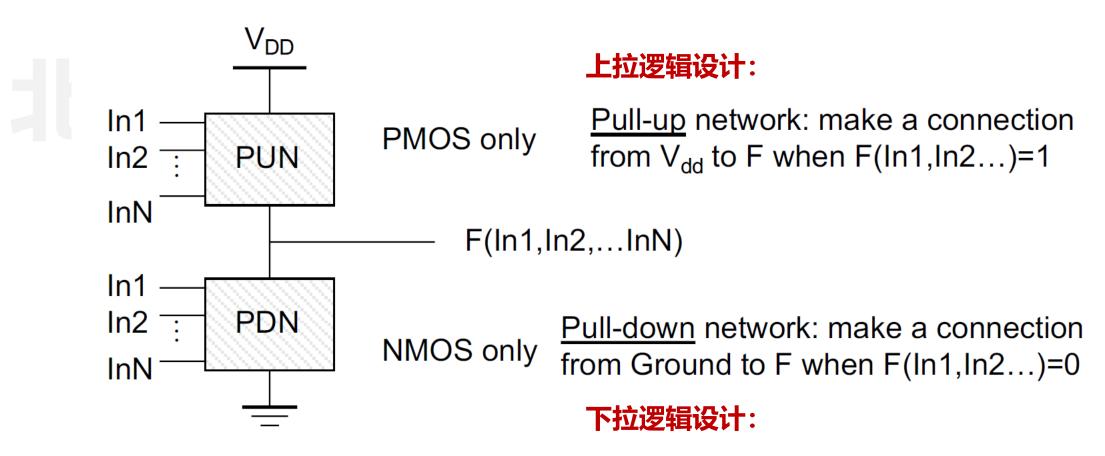
求对偶式

$$F \not = AB + AB + BC + ACD = A + BC + ACD$$

$$= A + BC$$
 提取共同项A

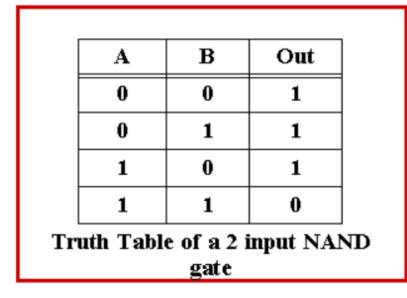
提取共同项A

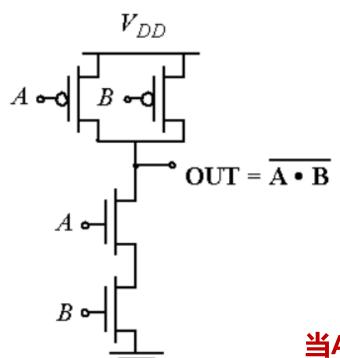
· NMOS、PMOS可以组成PDN和PUN



PUN and PDN are dual networks

· 由PDN和PUN组成的NAND门电路





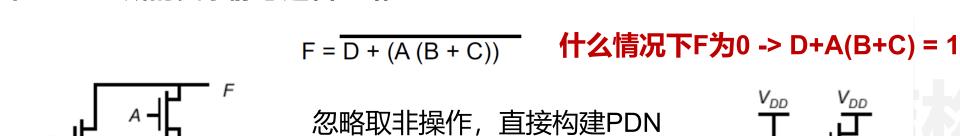
当A和B同为1时,输出为0 当A和B有0时,输出为1

NANDIT

PDN: Connects OUT to ground when $A \bullet B = 1$ PUN: Connects OUT to V_{dd} when A + B = 1

So OUT = Complement of PDN function
Also OUT = PUN function with each input inverted

·由PDN和PUN组成的复杂静态逻辑电路



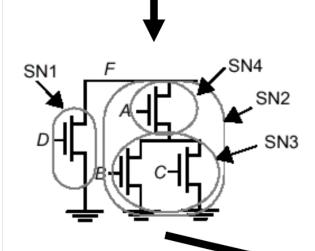
Ex: D+X意味着D与X并联

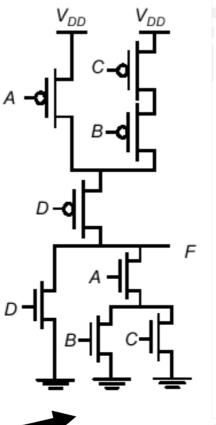
构建PDN的亚网络

在SN3内,B和C是并联的,

则在PUN中,他们串联

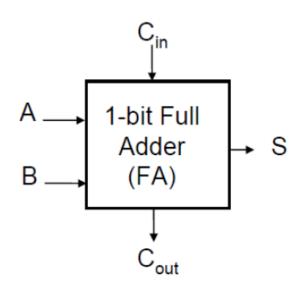
自下向上构建





・简单1bit加法器电路

- A[n-1:0] + B[n-1:0] = S[n-1:0]



Α	В	C _{in}	C _{out}	S	carry status
0	0	0	0	0	kill
0	0	1	0	1	kill
0	1	0	0	1	propagate
0	1	1	1	0	propagate
1	0	0	0	1	propagate
1	_9/	1	1	0	propagate
1	1	0	1	0	generate
1	1/	1	1	1	generate

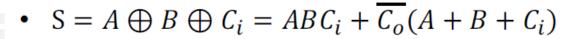
单比特加法器逻辑设计

$$S = A \oplus B \oplus C_i = ABC_i + \overline{C_o}(A + B + C_i)$$

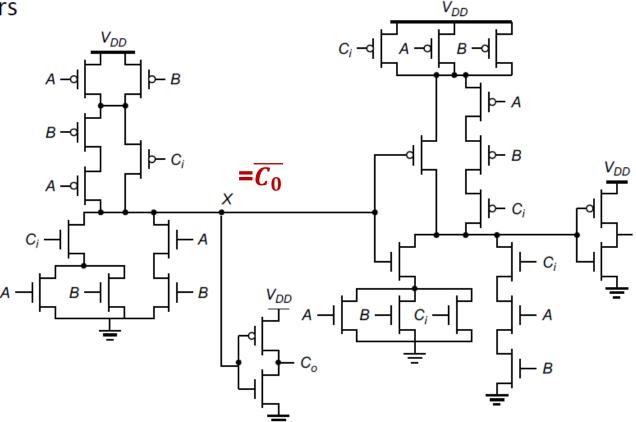
•
$$G = AB$$
, $K = \overline{A} \overline{B}$, $P = A \oplus B$

・简单1bit加法器电路

•
$$C_o = AB + BC_i + AC_i = AB + (A + B)C_i$$



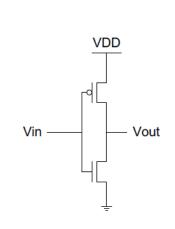
• 28 transistors

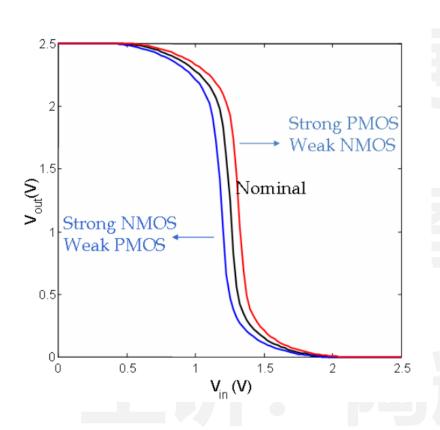


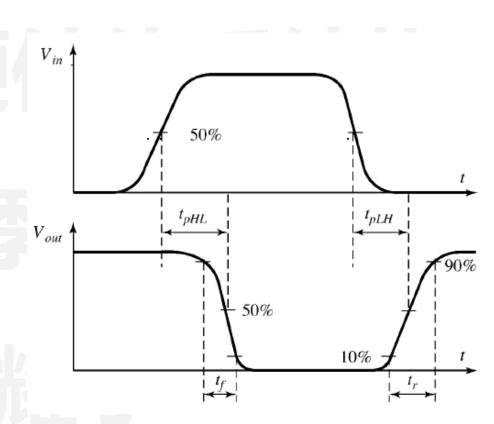
- 01. CMOS晶体管与静态逻辑
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

什么是电路的延迟

·以Inverter反相器为例



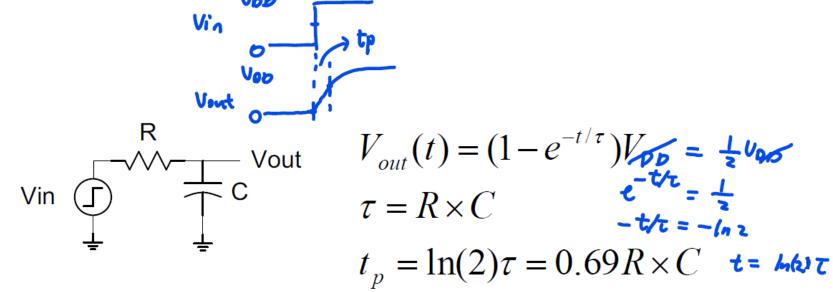




什么是电路的延迟

· 一阶RC延迟分析

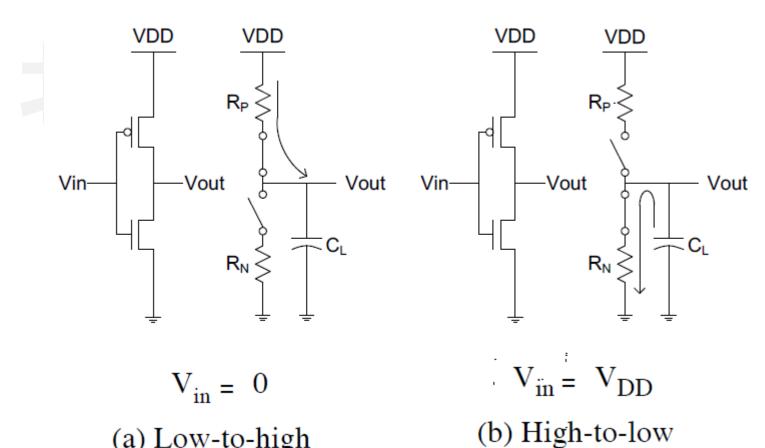
A First-Order RC Network



反相器延迟

利用一阶RC延迟分析方法

(a) Low-to-high



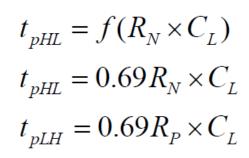
$$t_{pHL} = f(R_N \times C_L)$$

$$t_{pHL} = 0.69R_N \times C_L$$

$$t_{pLH} = 0.69R_P \times C_L$$

降低延迟的设计方法

· 利用一阶RC延迟分析方法

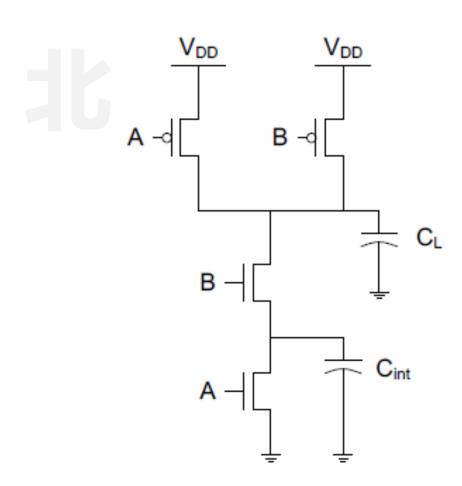


·利用较小的电容 - 降低C

- 版图紧凑, 布局合理
- 保持较短走线&减少diffusion routing
- ・增加晶体管尺寸 降低 R
 - -避免self-loading出现,否则会导致寄生电容增大
- ・増加电源电压
 - 同时会影响可靠性与功耗,因而一般不采用

输入Pattern对延迟的影响

·利用一阶RC延迟分析方法



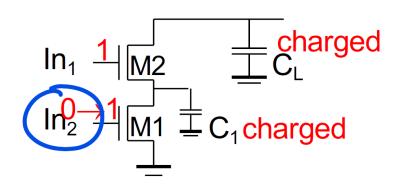
电路延迟与输入的顺序有关!

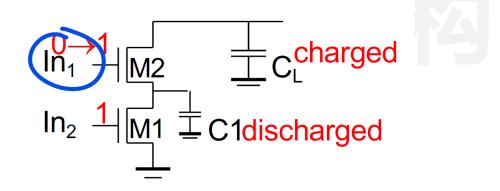
- Ignore C_{int} for the moment!
- Low to high transition
 - both inputs go low
 - delay is 0.69 R_p/2 C_L
 - one input goes low
 - delay is 0.69 R_p C_L
- High to low transition
 - both inputs go high
 - delay is 0.69 2R_n C_L

利用Transistor Ordering提升逻辑速度

和桌头掌 PEKING UNIVERSITY

· 复杂的Transistor Ordering需要仿真工具支持





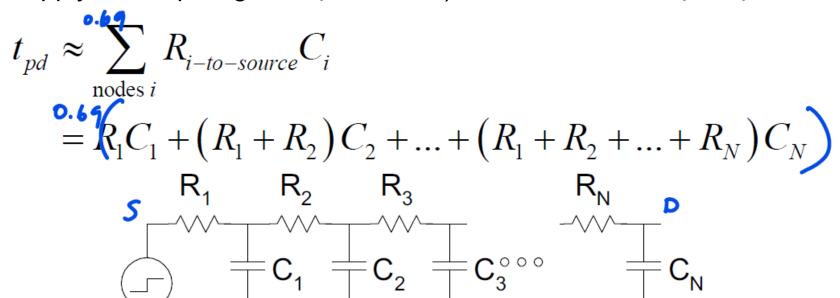
延迟由CL与C1放电时间决定

延迟由CL放电时间决定

逻辑电路的Elmore Delay模型

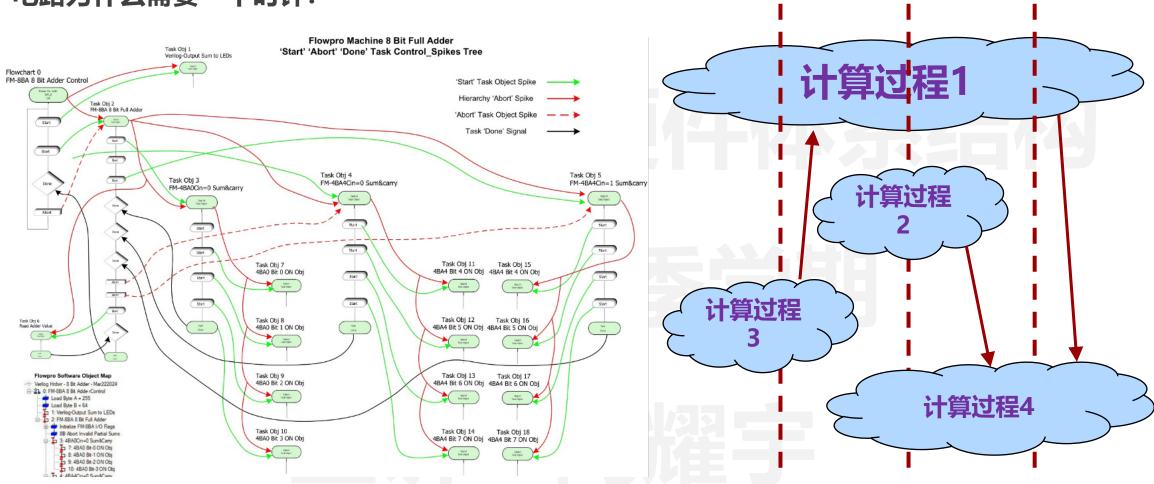
· 拓展多级的RC模型

- 电路网络建模为RC阶梯
- RC阶梯的Elmore延迟
- Apply to complex gates (i.e.,stacks),also interconnect (later)



- 01. 晶体管与逻辑门电路基础
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

・电路为什么需要一个时钟?

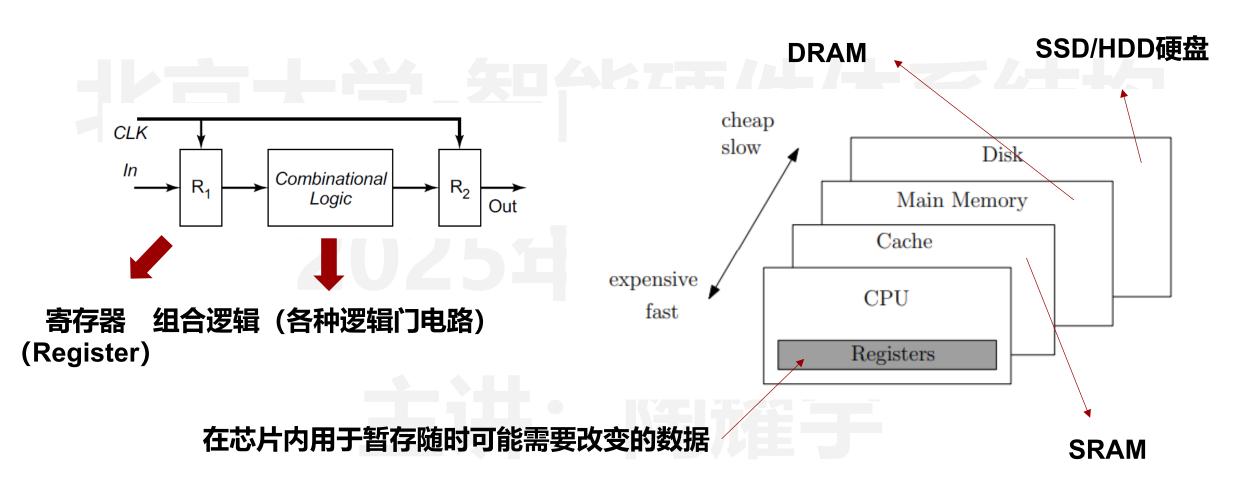


无时钟: 非常难以控制每一个信号的有效时间

引入时钟: 每隔一段计算将结果同步一次

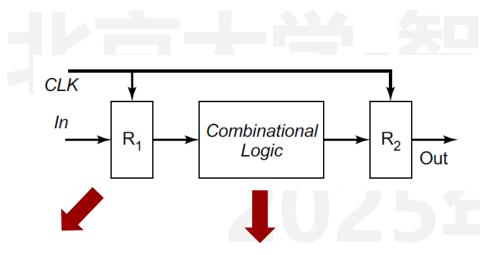
思想自由 兼容并包

・同步时序 (Synchronous Timing)



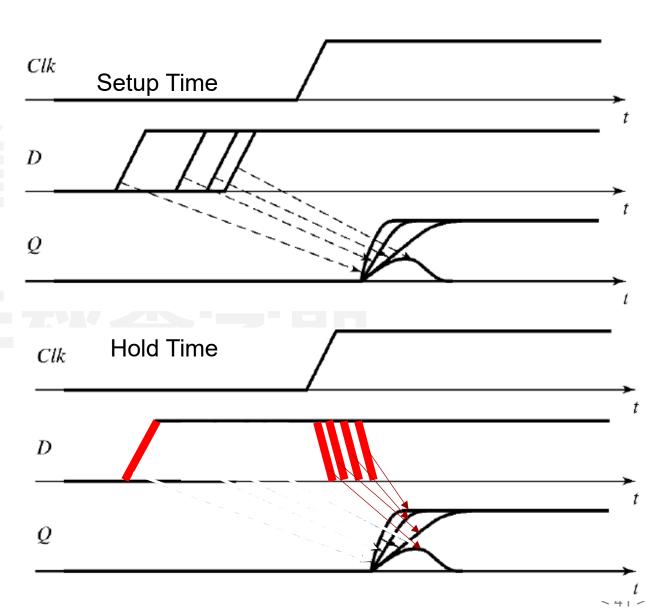
思想自由 兼容并包

・同步时序 (Synchronous Timing)

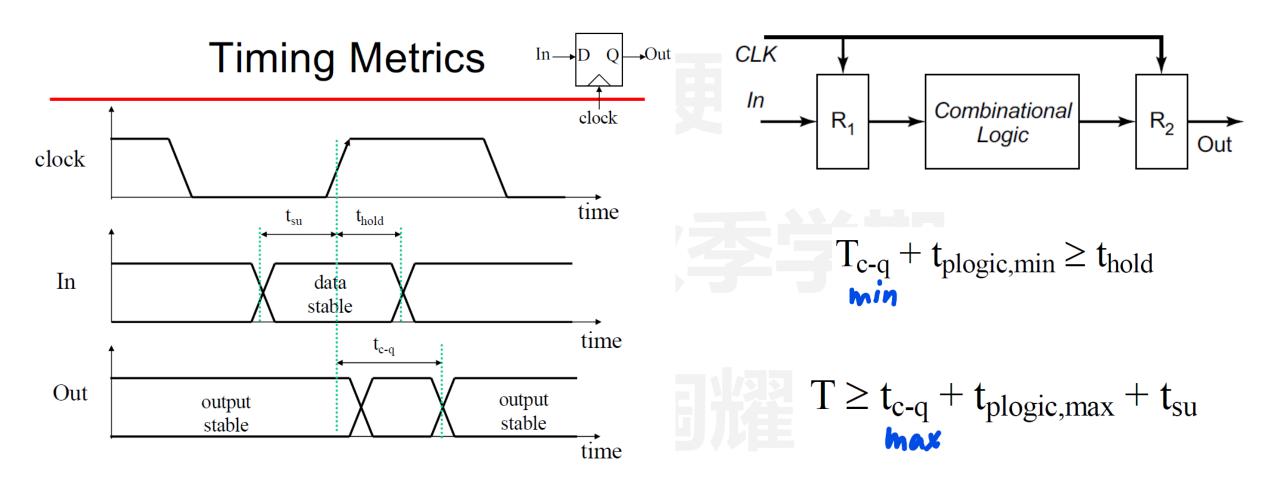


寄存器 组合逻辑 (各种逻辑门电路) (Register)

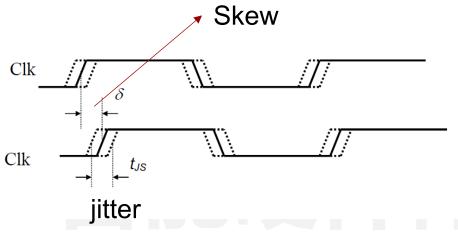
用于暂存随时可能需要改变的数据

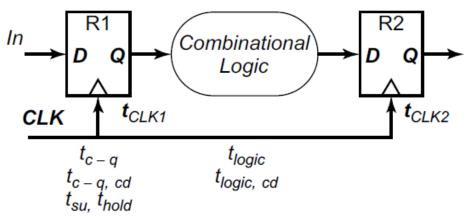


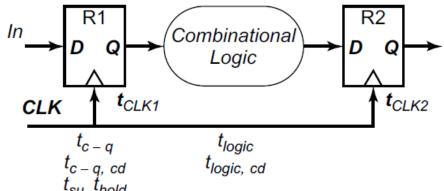
・同步时序 (Synchronous Timing)



・时钟的不稳定性







Minimum cycle time:

$$T \ge t_{c-q} + t_{su} + t_{logic} - \delta$$

最坏情况为接收边沿过早到达 (negative δ)

Hold time constraint:

$$t_{(c-q,\ cd)} + t_{(logic,\ cd)} > t_{hold} + \delta$$

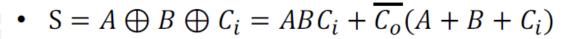
最坏情况为接收边沿过晚到达 (正偏差) 数据和时钟之间的竞争

Cd: contamination delay (最快可能延迟)

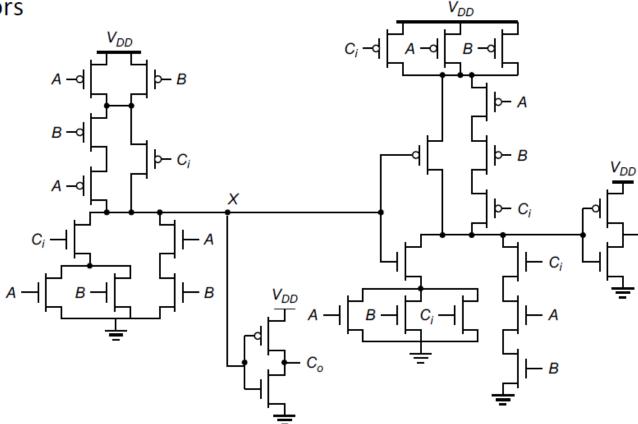
- 01. 晶体管与逻辑门电路基础
- 02. 电路延迟分析与逻辑功效
- 03. 动态逻辑电路与时序电路
- 04. 复杂计算单元与线路分析

・简单1bit加法器电路

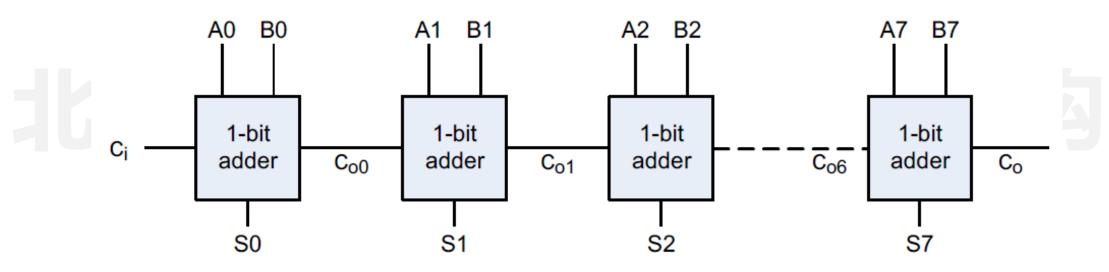
•
$$C_o = AB + BC_i + AC_i = AB + (A + B)C_i$$



• 28 transistors



· Ripple Carry加法器电路



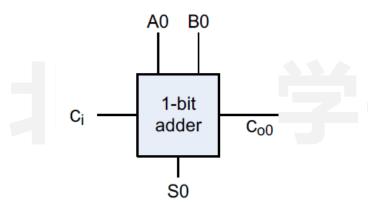
最差延迟与比特数呈线性关系

$$t_d = O(N)$$

$$t_{adder} = (N-1)t_{carry} + t_{sum}$$

目标: 设计拥有最快可能进位路径的电路

·基于PGK的加法器设计方法



Generate (G) = AB

Propagate (P) = $A \oplus B$

$$-$$
 Kill: $C_{out} = 0$ independent of C_{in}

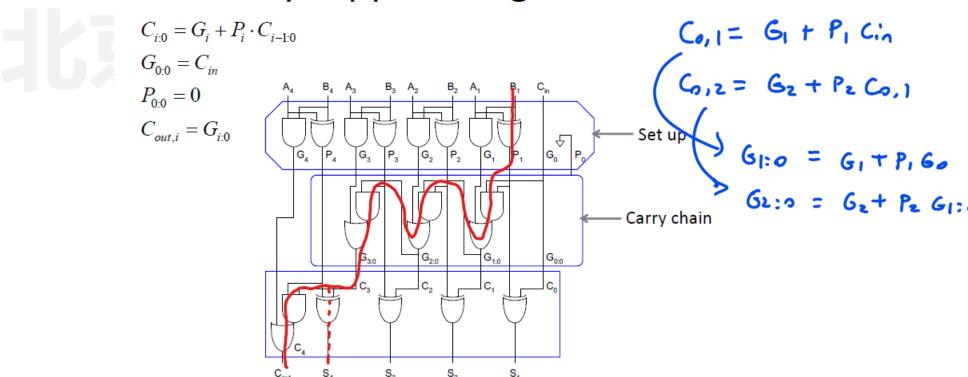
$$C_o(G, P) = G + PC_i$$

$$S(G, P) = P \oplus C_i$$

$$F = A \oplus R$$

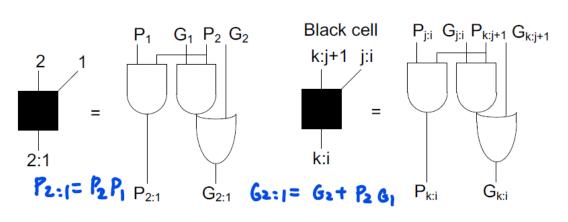
基于PGK的加法器设计方法

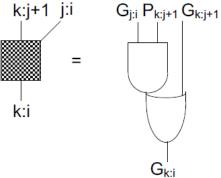
Carry-Ripple using P and G



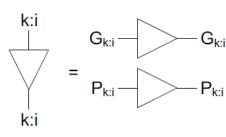
 $t_{adder} = t_{setup} + (N-1) t_{carry} + max(t_{carry}, t_{sum})$

·基于PGK的加法器设计方法

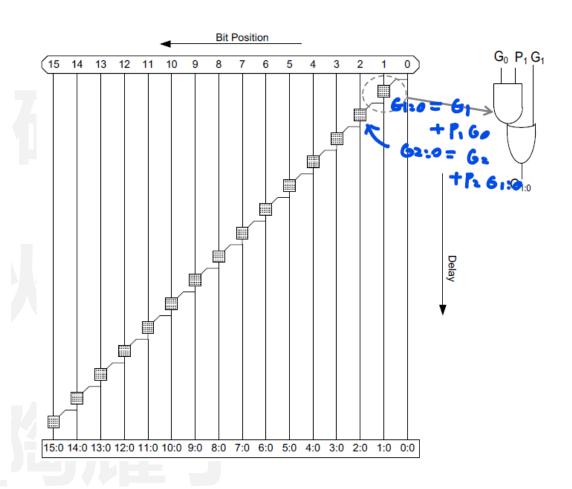




Buffer

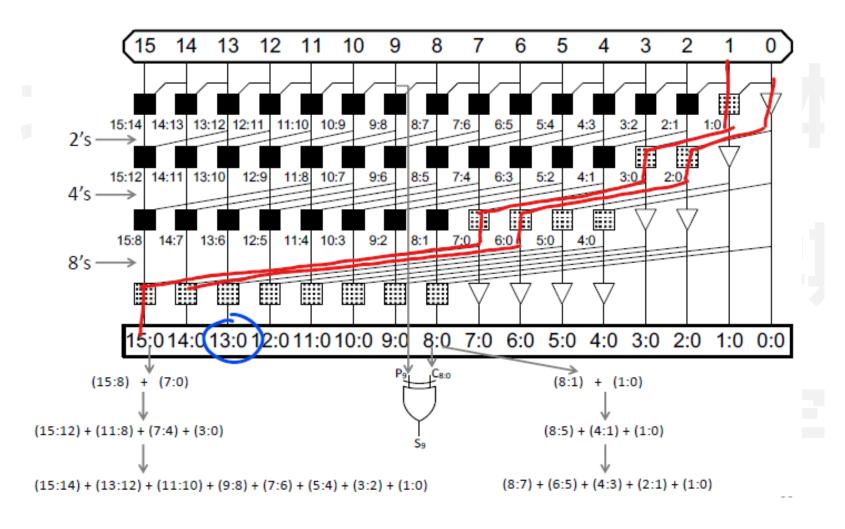


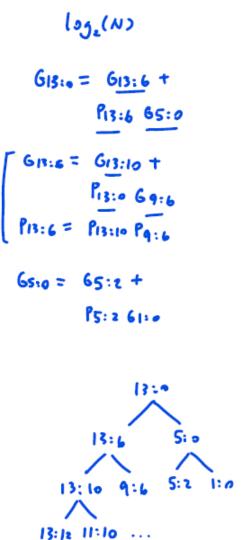
PG生成逻辑



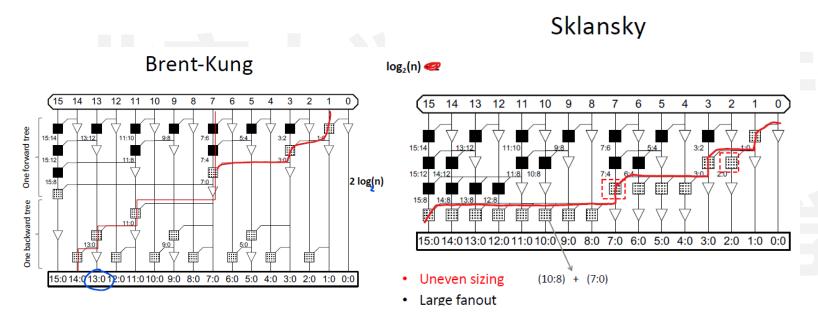
Carry Ripple的PG图

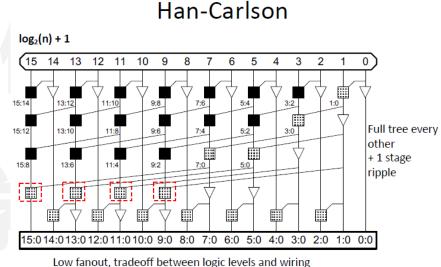
· 基于PGK的加法器设计方法 – 复杂PG树加法器





・基于PGK的加法器设计方法 – 复杂PG树加法器





Reduces wire length by half! → half power compared to Kogge Stone

- Kogge-Stone: low logic levels, low fanout, high wiring
- Brent-Kung: low fanout, low wiring, high logic levels
- Sklansky: low logic levels, low wiring, high fanout

思想自由 兼容并包

・乘法器设计的核心是部分和累加

Example:

1100 : 12₁₀

 $\frac{0101}{1100}$: 5_{10}

0000

1100

0000

 $\overline{00111100}$: 60_{10}

multiplicand multiplier

partial products

product

M x N比特乘法

- 产生N个M比特部分乘积
- 求和得到M+N比特的结果

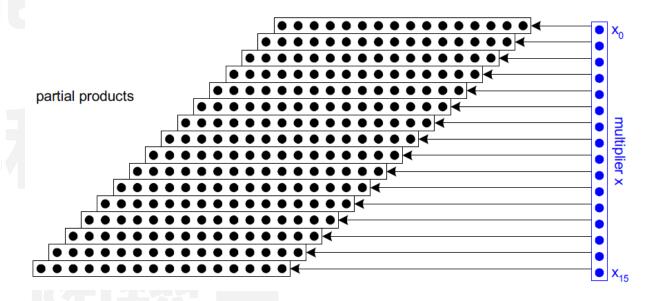
・乘法器设计的核心是部分和累加

Multiplicand: $Y = (y_{M-1}, y_{M-2}, ..., y_1, y_0)$

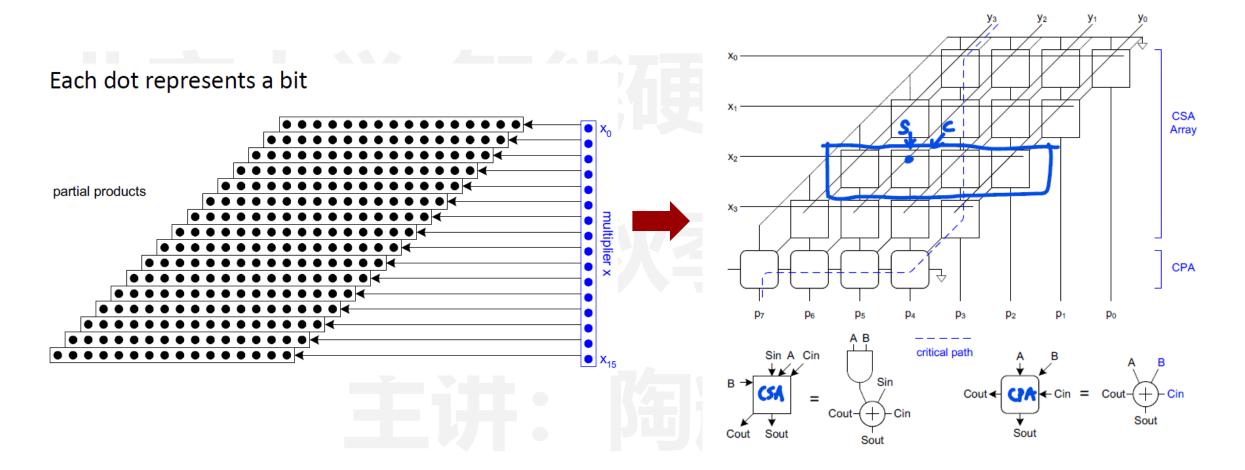
Multiplier: $X = (x_{N-1}, x_{N-2}, ..., x_1, x_0)$

Product:
$$P = \left(\sum_{j=0}^{M-1} y_j 2^j\right) \left(\sum_{i=0}^{N-1} x_i 2^i\right) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_i y_j 2^{i+j}$$

Each dot represents a bit



・乘法器设计的核心是部分和累加



• 如何减少部分和累加的次数?

- 阵列乘法器需要N个部分结果
- 如果我们将乘数以r bits为单位分组做乘法,我们将获得N/r个部分结果

- ・如何减少部分和累加的次数 布斯编码 (Radix-2^r)
 - PPi = 3Y时,可以用-Y表示并在下一级部分积中加4Y 通过这种方式,部分积的计算中只用到了移位和补码计算
 - 相似的, PPi = 2Y时, 可以用-2Y表示并在下一级部分积中加4Y

		nputs		Partial Product	В	ooth Selects	
	x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	$SINGLE_i$	$DOUBLE_i$	NEG_i
	0	0	0	0	0	0	0
4y-2y 0 4y - y	0	0	(1)	Ŷ	1	0	0
4y – y	0	1	0	Y	1	0	0
	0	1	1	2Y	0	1	0
	(1	0)	0	-2Y	0	1	1
	1	0	1	- Y	1	0	1
	1	1	0	- Y	1	0	1
	(1	1)	1	-0 (= 0)	0	0	1
v			~				
1	(_([†] ,					

・如何减少部分和累加的次数 – 布斯编码 (Radix-2^r)

布斯编码的几点要求:

- 乘数、被乘数、结果均为补码
- 乘法计算前应在乘数末尾补零
- 被乘数双符号位
- 符号位参与计算

	Inputs		Partial Product	В	ooth Selects	
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	$SINGLE_i$	$DOUBLE_i$	NEG_i
0	0	0	0	0	0	0
0	0	(1)	Y	1	0	0
0	1	0	Y	1	0	0
0	1	1	2Y	0	1	0
(1	0)	0	-2Y	0	1	1
1	0	1	-Y	1	0	1
1	1	0	-Y	1	0	1
(1	1)	1	-0 (= 0)	0	0	1

假设计算 Y x Q = -6 x -7, Q 是乘数, Y 是被乘数 (4bit)

1,
$$Y = -6 = 1010$$
 $Q = -7 = 1001$ $-Y = 6 = 0110$

- 2、乘数 Q 后补零, Q = 10010
- 3、被乘数双符号位, Y = 11010, -Y = 00110
- 3、乘法步骤 (A为部分和、Q为乘数)

Step 1: Q = 10010

A = 11111010 Q = 10<u>01</u> Q-1 = 0 补码符号扩展

Step 2: Q = 10010

A = 00110000 Q = 1001 Q-1 = 0 左移补零

结果: 11111010 (-6) + 00110000 (48) = 42

・如何减少部分和累加的次数 – 布斯编码 (Radix-2^r)

布斯编码的几点要求:

- 乘数、被乘数、结果均为补码
- 乘法计算前应在乘数末尾补零
- 被乘数双符号位
- 符号位参与计算

	Inputs		Partial Product	В	ooth Selects	
x_{2i+1}	x_{2i}	x_{2i-1}	PP_i	$SINGLE_i$	$DOUBLE_i$	NEG_i
0	0	0	0	0	0	0
0	0	(1)	Y	1	0	0
0	1	0	Y	1	0	0
0	1	1	2Y	0	1	0
(1	0)	0	-2Y	0	1	1
1	0	1	-Y	1	0	1
1	1	0	-Y	1	0	1
(1	1)	1	-0 (= 0)	0	0	1

假设计算 $Y \times Q = -6 \times 7$, Q 是乘数, Y 是被乘数 (6bit)

1, Y = -6 = 111010 Q = 7 = 000111 -Y = 6 = 000110

2、乘数 Q 后补零, Q = 0001110

3、被乘数双符号位, Y = 1111010, -Y = 0000110

3、乘法步骤(A为部分和、Q为乘数)

Step 1: Q = 0001110

A = 000000000110 Q = 0001<u>11</u> Q-1 = 0 补码符号扩展

Step 2: Q = 0001110

A = 111111010000 Q = 000111 Q-1 = 0 左移/符号位扩展

Step3: Q = 0001110

结果 = 000000000110 (6) + 1111111010000 (-48) = -42

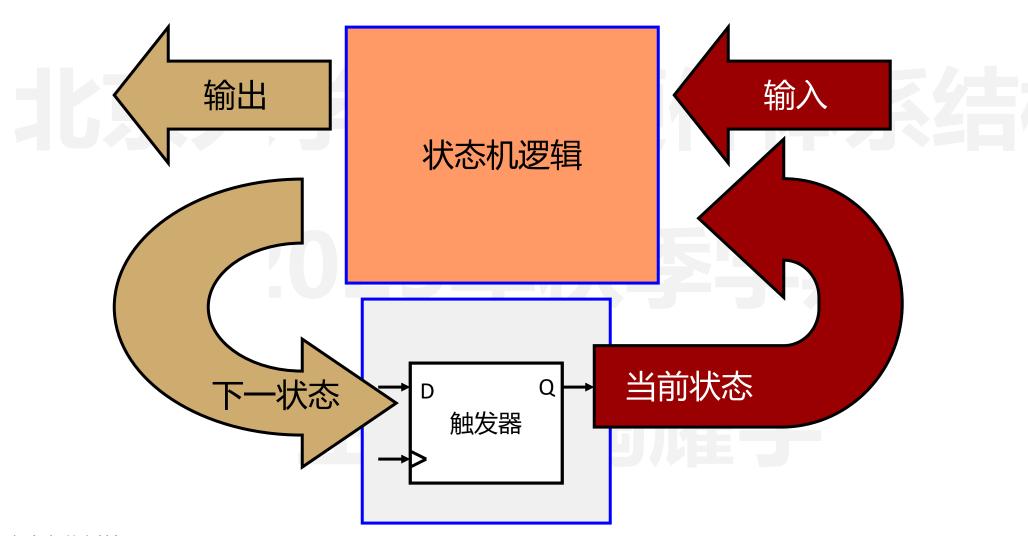
位移器设计

· Shifter也是重要的数字电路模块之一

```
module barrel shifter
        input logic [7:0] a,
        input logic [2:0] amt,
        output logic [7:0] y
                                                                8-bit
                                                               Barrel
    always comb
        case (amt)
                                                               Shifter
                                                 amt __
            3'b0000: y = a;
            3'b001: y = {a[0], a[7:1]};
            3'b010: y = {a[1:0], a[7:2]};
            3'b011: y = \{a[2:0], a[7:3]\};
            3'b100: y = \{a[3:0], a[7:4]\};
            3'b101: y = \{a[4:0], a[7:5]\};
            3'b110: y = {a[5:0], a[7:6]};
            3'b111: y = {a[6:0], a[7]};
            default: y = a;
        endcase
endmodule
```

思想自由 兼容并包

・控制电路的基石



思想自由兼容并包 <60>

社桌大学 PEKING UNIVERSITY

・控制电路的基石

状态机实例1-控制一个红绿灯

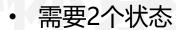
- 仅考虑红灯和绿灯,灯转换的速度不快于每次30s (0.033 Hz 时钟)
- 2个输出
 - NSlight: 1=南北向为绿灯; 0=南北向红灯
 - EWlight: 1=东西向为绿灯; 0=东西向为红灯
- 2个输入
 - Nscar: 1=南北向有车等; 0=南北向无车等
 - Ewcar: 1=东西向有车等; 0=南北向无车等
- 规则
 - 交通灯切换到另一个方向当且仅当另一方向有车等
 - 否则,保持当前交通灯不变

和某人掌 PEKING UNIVERSITY

・控制电路的基石

状态机实例1-控制一个红绿灯

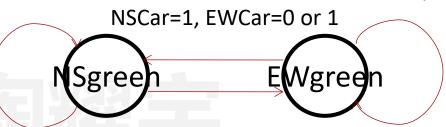
- 2个输出
 - NSlight: 1=南北向为绿灯; 0=南北向红灯
 - EWlight: 1=东西向为绿灯; 0=东西向为红灯
- 2个输入
 - Nscar: 1=南北向有车等; 0=南北向无车等
 - Ewcar: 1=东西向有车等; 0=南北向无车等
- 规则
 - 交通灯切换到另一个方向当且仅当另一方向有车等
 - 否则,保持当前交通灯不变



Nsgreen EWgreen

EWCar=0, NSCar=0 or 1

NSCar=0, EWCar=0 or 1



EWCar=1, NSCar=0 or 1

・控制电路的基石

状态机实例1-控制一个红绿灯

- 需要2个状态
 - Nsgreen, EWgreen

EWCar=0, NSCar=0 or 1

NSCar=0, EWCar=0 or 1

NSCar=1, EWCar=0 or 1

NSgreen EWgreen

EWCar=1, NSCar=0 or 1

	Inp	outs		
Current state	NScar	EWcar	Next state	
NSgreen	0	0	NSgreen	
NSgreen	0	1	EWgreen	
NSgreen	1	0	NSgreen	
NSgreen	1	1	EWgreen	
EWgreen	0	0	EWgreen	
EWgreen	0	1	EWgreen	
EWgreen	1	0	NSgreen	
EWgreen	1	1	NSgreen	

	Outputs		
Current state	NSlite	EWlite	
NSgreen	1	0	
EWgreen	0	1	

 $NextState = (\overline{CurrentState} \cdot EWcar) + (CurrentState \cdot \overline{NScar})$

 $NSlite = \overline{CurrentState}$

EWlite = CurrentState

・控制电路的基石

状态机实例1-控制一个红绿灯

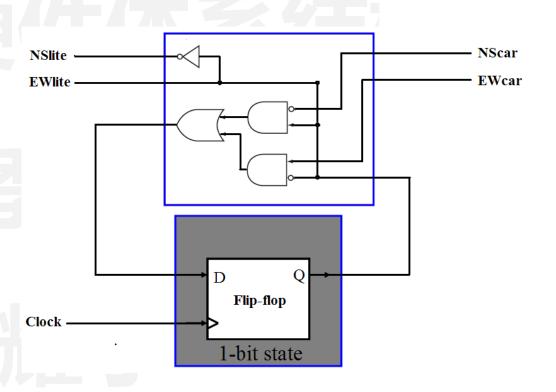
	Inp	uts		
Current state	NScar	EWcar	Next state	
NSgreen	0	0	NSgreen	
NSgreen	0	1	EWgreen	
NSgreen	1	0	NSgreen	
NSgreen	1	1	EWgreen	
EWgreen	0	0	EWgreen	
EWgreen	0	1	EWgreen	
EWgreen	1	0	NSgreen	
EWgreen	1	1	NSgreen	

	Outputs		
Current state	NSlite	EWlite	
NSgreen	1	0	
EWgreen	0	1	

 $NextState = (\overline{CurrentState} \cdot EWcar) + (CurrentState \cdot \overline{NScar})$

NSlite = CurrentState

EWlite = CurrentState



・控制电路的基石

Step 1 – 定义状态并画出状态转换图

Step 2 - 给每一个状态赋值并更新状态转换图

Step 3 – 根据状态转换图写出下一状态和输出的逻辑表达式

Step 4 – 画出实际电路图

状态将在每一个时钟上升沿更新